Sensor fault diagnosis for nonlinear processes with parametric uncertainties.
نویسندگان
چکیده
This paper addresses the problem of detecting, discriminating, and reconstructing sensor faults for nonlinear systems with known model structure but uncertainty in the parameters of the process. The convenience of the proposed technique lies in the fact that historical operational data and/or a priori fault information is not required to achieve accurate fault reconstruction except for fixed, short intervals. The overall fault diagnosis algorithm is composed of a series of nonlinear estimators, which estimates parameter and a fault isolation and identification filter. Parameter estimation and fault reconstruction cannot be performed accurately since faults and parametric uncertainty interact with each other. Therefore, these two tasks are performed at different time scales, where the fault diagnosis takes place at a more frequent rate than the parameter estimation. It is shown that the fault can be reconstructed under some realistic assumptions and the performance of the proposed methodology is evaluated on a simulated chemical process exhibiting nonlinear dynamic behavior.
منابع مشابه
Sensor Fault Detection for a class of Uncertain Nonlinear Systems Using Sliding Mode Observers
This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملFault Estimation - A Standard Problem Approach
This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis problems can be solved by standard optimization techniques. The proposed methods include: (1) fault dia...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of hazardous materials
دوره 130 1-2 شماره
صفحات -
تاریخ انتشار 2006